Algebraic and Analytic Aspects of Soliton Type Equations
نویسندگان
چکیده
This is a review of two of the fundamental tools for analysis of soliton equations: i) the algebraic ones based on Kac-Moody algebras, their central extensions and their dual algebras which underlie the Hamiltonian structures of the NLEE; ii) the construction of the fundamental analytic solutions (FAS) of the Lax operator and the Riemann-Hilbert problem (RHP) which they satisfy. The fact that the inverse scattering problem for the Lax operator can be viewed as a RHP gave rise to the dressing Zakharov-Shabat, one of the most effective ones for constructing soliton solutions. These two methods when combined may allow one to prove rigorously the results obtained by the abstract algebraic methods. They also allow to derive spectral decompositions for non-self-adjoint Lax operators.
منابع مشابه
Some traveling wave solutions of soliton family
Solitons are ubiquitous and exist in almost every area from sky to bottom. For solitons to appear, the relevant equation of motion must be nonlinear. In the present study, we deal with the Korteweg-deVries (KdV), Modied Korteweg-de Vries (mKdV) and Regularised LongWave (RLW) equations using Homotopy Perturbation method (HPM). The algorithm makes use of the HPM to determine the initial expansion...
متن کاملEffective Dynamics of Double Solitons for Perturbed Mkdv
We show that an interacting double soliton solution to the perturbed mKdV equation (1.1). is close in H2 to a double soliton following an effective dynamics obtained as Hamilton’s equations for the restriction of the mKdV Hamiltonian to the submanifold of solitons. The interplay between algebraic aspects of complete integrability of the unperturbed equation and the analytic ideas related to sol...
متن کاملTopological soliton solutions of the some nonlinear partial differential equations
In this paper, we obtained the 1-soliton solutions of the symmetric regularized long wave (SRLW) equation and the (3+1)-dimensional shallow water wave equations. Solitary wave ansatz method is used to carry out the integration of the equations and obtain topological soliton solutions The physical parameters in the soliton solutions are obtained as functions of the dependent coefficients. Note t...
متن کاملNew explicit and Soliton Wave Solutions of Some Nonlinear Partial Differential Equations with Infinite Series Method
To start with, having employed transformation wave, some nonlinear partial differential equations have been converted into an ODE. Then, using the infinite series method for equations with similar linear part, the researchers have earned the exact soliton solutions of the selected equations. It is required to state that the infinite series method is a well-organized method for obtaining exact s...
متن کاملSolution and stability analysis of coupled nonlinear Schrodinger equations
We consider a new type of integrable coupled nonlinear Schrodinger (CNLS)equations proposed by our self [submitted to Phys. Plasmas (2011)]. The explicitform of soliton solutions are derived using the Hirota's bilinear method.We show that the parameters in the CNLS equations only determine the regionsfor the existence of bright and dark soliton solutions. Finally, throughthe linear stability an...
متن کامل